Capelli Identities for Classical Lie Algebras
نویسندگان
چکیده
We extend the Capelli identity from the Lie algebra glN to the other classical Lie algebras soN and spN . We employ the theory of reductive dual pairs due to Howe.
منابع مشابه
Transfer of Ideals and Quantization of Small Nilpotent Orbits
We introduce and study a transfer map between ideals of the universal enveloping algebras of two members of a reductive dual pair of Lie algebras. Its definition is motivated by the approach to the real Howe duality through the theory of Capelli identities. We prove that this map provides a lower bound on the annihilators of theta lifts of representations with a fixed annihilator ideal. We also...
متن کاملJordan algebras and Capelli identities
The purpose of this paper is to establish a connection between semisimple Jordan algebras and certain invariant differential operators on symmetric spaces; and to prove an identity for such operators which generalizes the classical Capelli identity. The norm function on a simple real Jordan algebra gives rise to invariant differential operators Dm on a certain symmetric space which is a natural...
متن کاملNoncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities I. Generalizations of the Capelli and Turnbull identities
We prove, by simple manipulation of commutators, two noncommutative generalizations of the Cauchy–Binet formula for the determinant of a product. As special cases we obtain elementary proofs of the Capelli identity from classical invariant theory and of Turnbull’s Capelli-type identities for symmetric and antisymmetric matrices.
متن کاملLie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملSchur Type Functions Associated with Polynomial Sequences of Binomial Type
We introduce a class of Schur type functions associated with polynomial sequences of binomial type. This can be regarded as a generalization of the ordinary Schur functions and the factorial Schur functions. This generalization satisfies some interesting expansion formulas, in which there is a curious duality. Moreover this class includes examples which are useful to describe the eigenvalues of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008